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Abstract—Web accessibility, the design of web apps to be
usable by users with disabilities, impacts millions of people
around the globe. Although accessibility has traditionally been
a marginal afterthought that is often ignored in many software
products, it is increasingly becoming a legal requirement that
must be satisfied. While some web accessibility testing tools
exist, most only perform rudimentary syntactical checks that
do not assess the more important high-level semantic aspects
that users with disabilities rely on. Accordingly, assessing web
accessibility has largely remained a laborious manual process
requiring human input. In this paper, we propose an approach,
called AXERAY, that infers semantic groupings of various regions
of a web page and their semantic roles. We evaluate our approach
on 30 real-world websites and assess the accuracy of semantic
inference as well as the ability to detect accessibility failures. The
results show that AXERAY achieves, on average, an F-measure
of 87% for inferring semantic groupings, and is able to detect
accessibility failures with 85% accuracy.

Index Terms—web accessibility, web testing, accessibility test-
ing, visual analysis

I. INTRODUCTION

Web accessibility is the notion of implementing web apps
in a fashion that allows programmatic access to software func-
tionalities that are otherwise only perceivable through certain
senses (e.g., visually). Accessibility has been sometimes dealt
with as an afterthought or a nice to have optional feature, with
many developers and companies ignoring it altogether [1], [2].
However, as shown in Figure 1, millions of people around the
globe have software-related disabilities and are impacted by
web accessibility, or the lack thereof.

Furthermore, accessibility is increasingly becoming a legal
requirement ratified into laws in many countries. For instance,
in the United States, the Americans with Disabilities Act [3]
requires all government and public agencies, as well as certain
businesses, to make all their software and information tech-
nology services accessible. Similar provisions are required by
law under the European Union’s Web Accessibility Directive
[4]. Figure 2 shows the increasing number of lawsuits filed
in federal US courts against businesses for failing to provide
accessibility accommodations.

Despite the increasing legal, economical, and human costs
due to lack of accessibility, there has been little work in
the software engineering research community to automate
accessibility testing. Eler et al. [5] check for missing attribute
fields or incorrect attribute values related to accessibility of

web pages, an approach that is also used in a few patents [6],
[7]. The bulk of existing work focuses on topics such as
evaluating best practices for conducting empirical accessibility
evaluations, such as manual checklist walkthroughs [8] or
enlisting visually-impaired users as part of user studies [9]. A
number of open-source tools have been developed to conduct
simple syntactic accessibility tests that only check a few
attribute values in a web page. In an audit of 13 of such
accessibility testing tools conducted by the United Kingdom
Government’s Office of Digital Services [10], these tools found
only %26 of a known small set of accessibility violations
present in tested web pages.

The aforementioned tools are based on conducting syntactic
checks, which are simple markup rules (e.g., any a element
must contain a non-empty string) to check for a minimal level
of accessibility. However, none of the aforementioned tools
analyze key accessibility requirements related to the semantics
of a page, such as the high level page structure and the
roles or purpose of various elements. It is these semantic
aspects of a page that users with disabilities rely on the
most while using web pages [11], but none of the existing
tools test for. Accordingly, the high level semantic analysis of
web accessibility has remained a manual and laborious time
consuming process [12], [13], [14], [15].

To that end, we propose an approach that automates testing
of a subset of web accessibility requirements pertaining to
high level semantic checks that have not been amenable to
automation. The approach is based on a visual analysis of the
web page, coupled with a few natural language processing
(NLP) steps, to conduct a semantic analysis of web pages.
This analysis first identifies major cohesive regions of a page,
then infers their semantic role or purpose within the page. Sub-
sequently, a conformance check is conducted that determines
whether the markup of the page correctly corresponds to the
inferred semantics. If the markup contains the same semantic
information perceivable by sighted users, the page is deemed
accessible. Otherwise, if semantic information of the page is
perceivable only visually but not conveyed in the markup,
the page would be flagged as failing the accessibility test
and the specific reasons are reported. In this work, we focus
on vision disabilities as opposed to other forms of disability
(e.g., hearing). The rationale for this is twofold. First, the
web is predominantly a visual medium where most of the
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Figure 1. Number of people with software-related disabilities (e.g.,
vision, hand control, cognitive, or hearing) in the United States and
the European Union. (Data compiled from: [16], [17])
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Figure 2. Number of software accessibility lawsuits filed in US federal
courts per year. The number of lawsuits increased by around 3800%
over the four-year period 2015-2018. (Data compiled from: [18], [19])

information is accessed visually as opposed to other senses.
Second, surveys have shown that vision disabilities are the
most relevant to web users with disabilities [11].

This paper makes the following main contributions:
• A novel approach for automatically testing semantic

accessibility requirements, which is the first to address
this issue, to the best of our knowledge.

• A technique that is based on visual analysis, coupled with
a few natural language processing steps, to infer structure
and semantic groupings on a web page for the purpose
of accessibility testing.

• An implementation of our approach, available in a tool
called AXERAY.

• A qualitative and quantitative evaluation of AXERAY
in terms of its inference accuracy and ability to detect
accessibility failures. The results show that it achieves an
F-measure of 87% for inferring semantic groupings, and
is able to detect accessibility failures with 85% accuracy.

II. BACKGROUND AND MOTIVATING EXAMPLE

Figure 3 shows an example of an inaccessible web page.
In a quick glance at the rendered page in (c), a sighted
user can immediately understand the structure of the page
and navigate their way through the various contents of the
page. For instance, the user would immediately recognize that
they can navigate to other areas of the web site through the
navigation menu at the top (i.e., Home, News, FAQ).

While this happens naturally and instantaneously for sighted
users, that is not the case for visually impaired (i.e., non-
sighted) users. The page structure (e.g., the presence of a
navigation bar at the top) is communicated exclusively through
visual design, since the HTML markup in Figure 3(a) is simply
a collection of <div> s that do not communicate any semantic
functionality. This implicit visual communication is intuitive
and natural for sighted developers and users, but is unavailable
for users who can not have access to visual information due to
disabilities. Accordingly, the markup is deemed inaccessible,
because it is expressed in a fashion that does not provide any
semantic information about the page structure.

The analysis and conclusion that we just made is currently
being done manually, since it requires high level semantic
analysis of the page. Our goal in this work is to automate
the reasoning we have just described in order to be able to
automatically reach conclusions about the accessibility of web
pages.

A. ARIA roles

The aforementioned lack of semantic markup in the code
makes it difficult for non-sighted users to navigate the page.
This is because such users rely on screen readers to parse the
page for them and present them with the various information or
navigation options present in the page. Screen readers are tools
that speak out the various options, regions, or tasks accessible
from the page, and the non-sighted user would then select
one of the options they heard from the screen reader. Screen
readers can be thought of as web browsers for non-sighted
users, with one major caveat. While a standard web browser
simply renders the page as is and leaves it to the end user
to understand what the various elements mean, screen readers
expect that the page markup contains semantic information
about various areas of the page, which the reader would then
announce audibly, giving non-sighted users an understanding
of the overall semantic structure of the page.

The standard that is used by screen readers during their
processing of web pages is the W3C Accessible Rich Inter-
net Applications (ARIA) [20] semantic markup. The ARIA
standard specifies a set of markup attributes that should be
included in the page’s HTML to make it accessible to screen
readers or other assistive technologies.

Targeted roles. ARIA defines more than 80 attributes span-
ning various aspects of the page, from low level syntax require-
ments to high level semantic structure. We therefore have to
target a subset of these ARIA attributes because addressing
all 80+ attributes in a single academic paper is untractable.
The basis for selecting the targeted roles is that we focus
on the most commonly used [11] subset of ARIA, which are
landmark roles. Our own experimental results (Section IV-B2)
also demonstrate the widespread use of these roles. The roles



1 <div class="nv8471">
2 <div>Home</div>
3 <div>News</div>
4 <div>FAQ</div>
5 <div>Contact</div>
6 </div>
7
8 <div class="_hd902">
9 Resources

10 </div>
11 <div>
12 ...
13 </div>
14
15 <div class="_hd902">
16 About Us
17 </div>
18 <div>
19 ...
20 </div>

1 .nav8471 {
2 background-color:
3 #ffff00;
4 display:
5 flex;
6 justify-content:
7 space-around;
8 font-weight:
9 bold;

10 border:
11 2px solid #000000;ß
12 }
13
14 ._hd902 {
15 font-size:
16 5vw;
17 font-weight:
18 900;
19 padding:
20 8vh 0 2vh 0;
21 }

(a) HTML code (b) CSS declaration (c) Rendered page

Figure 3. An example of an inaccessible web page.

identify the major high-level regions of the page and specify
the semantic role for each of them. They consist of a set
of specific pre-defined roles that convey, though markup, the
otherwise only visually perceived role of each region. For
instance, the yellow rectangle at the top of Figure 3(c) is
perceivable as being a navigation bar, therefore the markup of
the element containing that region has to include the landmark
attribute role="navigation" . When a non-sighted user
loads the page, the screen reader would speak out the presence
of a navigation bar (and any other semantic regions in the
page), allowing the user to quickly perceive the high level
structure of the page, and directly interact with the region
they are looking for.

Accordingly, the absence of semantic markup in Figure 3(a)
makes the page inaccessible, because screen readers would be
unable to provide alternative, non-visual, means to access the
page. That is, the information and cues about the structure and
navigation of the page remain locked in the visual design of
the page and can not be accessed non-visually. The task of
ensuring web accessibility would therefore rely on one key
principle: any information, structure, or functionality that is
visually perceivable by sighted users must also be available
for non-sighted users. When a web page communicates its
structure and function using only visual design, without pro-
viding a programmatic means to access the same information,
it is deemed inaccessible.

B. Existing tools: syntax checkers

Existing accessibility testing tools [10] are based on syn-
tactic checking. They check the HTML against certain syntax
rules. For instance, one common check is to assert that
every img element has an alt text attribute (for text
descriptions). Another check asserts that input elements
must not be descendent of a . Another example is checking
that every form element has a label attribute. In general,

the syntactic checks all follow the form: if certain syntax A
is present, assert that syntax B is true.

While such syntax checks can be useful simple assertions
and are easy to automate, none of the existing tools perform
the more important, and more challenging, high level semantic
analysis of the page’s content. For instance, consider Fig-
ure 3(c), where we can see that there is a navigation bar at
the top. Now consider the HTML in (a), where we observe
that the developer did not use the required ARIA attribute of
role="navigation" . Accordingly, because we visually see

a navigation region in (c) but do not find it expressed in the
markup in (a), we conclude that the page has an accessibility
failure, because we perceived a certain semantic structure as
sighted users, but it was not expressed in the markup in order
to ensure it would be equally available for non-sighted users.
That is the the central issue in accessibility: making sure that
whatever is visually perceived is also expressed in the code.

We now pause to reflect and observe that there is no
syntactic check that can automate the conclusion we just
reached. That is, the process that we just walked through
requires our own visual perception as humans in order to reach
the conclusion that there is a mismatch between the perceived
page and the markup. This process can not be put in the form
of a syntax check.

In the next section, we describe how we construct an
approach that automates the accessibility testing procedure that
we have just manually conducted.

III. APPROACH

In this paper, we propose an approach to automatically
test for a subset of web accessibility violations that are
pertinent to semantic structure. We recall that the scope of
this work focuses on vision disabilities as opposed to other
forms of disability, due to the web being a predominantly



Figure 4. Overview of the proposed approach.

visual medium and the fact that vision disabilities are the most
common software-related disability [11].

Figure 4 shows an overview of our proposed approach,
which is based on the strategy of visually analyzing the web
page to infer semantic groupings and their roles, and then
checking that the HTML markup matches the inferred seman-
tic roles. The approach begins by obtaining the Document
Object Model (DOM) and screenshot of the web page rendered
in a web browser. Next, the set of visibly perceivable objects
is identified. This is then used to perform a semantic grouping
of the page into a set of semantically coherent regions.
Subsequently, this information is used in an inference stage
where the specific semantic role of each region is detected.
Finally, the inferred semantics are checked against the markup
used in the page, and a report is generated as to which parts of
the page are inaccessible. The rationale behind this strategy is
to check whether the semantics visually perceivable by sighted
users are reflected in the semantics of the HTML markup,
thereby ensuring accessibility.

A. Visual Objects Identification

In this first stage, the goal is to identify objects that are
perceivable by sighted users, which we refer to as visual
objects. For instance, in Figure 3(c), each item in the top
navigation menu would be a visual object. This step of visual
objects identification is the foundation of our overall approach,
since the identification of visual objects enables checking
whether the information and elements that are perceivable by
sighted users are also accessible to non-sighted users.

1) Objects Extraction: We begin by taking as input the
DOM of the page after it is loaded and rendered in a browser.
We then extract from the DOM a set of nodes that represent
visual content of the page, and we refer to each of these

as Visual Objects. We define three types of Visual Objects:
textual, image, and interactive.
Textual Objects. The extraction of text content is achieved
by traversing text nodes of the DOM. More specifically:

Θt := {E | ν(E) ∧ τ(E)} (1)

; where Θt is the set of all visual objects that represent text in
the page, E ∈ DOM is a leaf element iterator of the rendered
DOM in the browser, ν(E) is a heuristic predicate that runs
a series of checks to detect visually perceivable elements (as
will be described in section III-A2), and τ(E) is a predicate
that examines whether there is a text associated with E. More
specifically, it returns non-empty nodes of DOM type #TEXT ,
which represent string literals. An example of extracted textual
objects would be the “Resources” section in Figure 3(c). We
note that the predicate is based on a node type, rather than an
element (i.e., tag) type. This allows more robust abstraction
because the predicate captures any text and does not make
assumptions about how developers choose to place their text.
In other words, regardless of the tag used for text data (e.g.,
<span>, <div> ), text would still be stored in nodes of

type #TEXT , even for custom HTML elements. This helps
in making the approach more robust by reducing assumptions
about tags and how they are used in the page.
Image Objects. Subsequently, we perform another extraction
for image objects. We define this as follows:

Θm := {E | ν(E) ∧ µ(E)} (2)

where Θm is the set of all visual objects that represent
images. As in the previous case, the predicate µ(E) examines
whether there is any relevant image content associated with
E. This has two possibilities: a) nodes of <img> , <svg> ,
and <canvas> elements, and b) non-image nodes with a
non-null background image. An example of extracted image
objects would be the bell icon in Figure 3(c). We note
that this predicate makes the proposed approach more robust
by eliminating assumptions about how developers markup
images. If images are contained in standard tags (e.g., <img> ,
<svg> ), then the predicate readily captures them. However,

we make no assumptions that this is the only way an image
can be included. For this reason, we also capture elements of
any type when a non-null background image is detected.
Interaction Objects. Finally, we extract the interaction ele-
ments as follows:

Θi := {E | ν(E) ∧ η(E)} (3)

where Θi is the set of all visual objects that represent form
elements or similar interactive elements. These are determined
by the predicate η(E), which collects elements such as input
fields and drop down menus. An example of extracted inter-
action objects would be the Email input field in Figure 3(c).

2) Visual Assertion: After the preceding extraction of an
initial set of visual objects, this stage proceeds by conducting
a visual analysis of the objects. This analysis detects if an
object is visually perceivable. We conduct the visual analysis



as follows. First, we obtain the box model of each object.
We use the computed box model in order to faithfully capture
the location as finally rendered on screen. Next, we obtain a
screenshot of the region defined by the box model. We then
analyze the screenshot using the Prewitt operator [21] used
in computer vision. This operator applies a set of derivatives
or differentiation operations on the image, and then typically
used to detect salient visual features in the image (e.g., shapes,
textures). We therefore use this operator to extract any visual
features present in the image, regardless of the form of these
features. Depending on the presence or absence of visual
features, the perceptibility state of the object is determined. If
no visual features are detected, the object is deemed to be non-
perceivable, and vice versa. For example, consider Figure 3(c).
The navigation region in the top, and the main content that
follows it, are perceivable by sighted users. However, web
pages also have spacing elements that do affect the layout
but are not individually perceivable themselves. For instance,
there can be an element between the navigation bar and the
“Resources” section such that a certain vertical distance is
maintained below the navigation bar. While such a spacing
element certainly affects the layout and occupies screen space,
it does not constitute a visual object due to it’s imperceptibility.

B. Semantic Grouping

After the visual objects identification is completed, we
proceed by grouping visual objects into groups representing
potential semantically relevant regions on the page. For in-
stance, in Figure 3(c), one semantic grouping would be the
navigation region at the top of the page. Another semantic
grouping would be the “Resources” and “About Us” sections
representing the main content of the page.

The rationale for this step of the approach is as follows.
We recall that screen readers expect the markup to indicate
the major semantic regions of a page. Accordingly, in order
to automatically assert that any visually perceivable semantic
region has been also expressed in the markup, we first need
a mechanism by which we can detect the semantic regions in
the first place. This is what we aim to achieve in this stage.
Here we are only concerned with creating potential semantic
groupings, while the next stage (Section III-C) infers what
exactly is the semantic role (if any) of each potential grouping.

The grouping uses both structural (DOM) information as
well as visual analysis. The DOM is used to generate a large
number of potential seed groupings, and the visual analysis
performs filtering and further analysis to produce a final set
of groups. We adopted this strategy for the following reasons.
We observed that the DOM can be used as a source of seed
groupings due to its inherently hierarchical nature that also
tend to capture the developer’s or designer’s own intended
semantic grouping. That is, the children of a node constitute
a rudimentary form of a group, which can then be further
analyzed, merged, or divided, to create a refined grouping.
Subsequently, visual analysis filters these initial seed groups
and process them to construct semantic groupings. Visual
analysis is used because, while the DOM may provide seed

groupings, it does not faithfully represent what the end user
is actually observing on the screen.
Grouping process. We now describe the mechanism of the
grouping process. First, we obtain one flat non-hierarchical set
of all DOM elements. For instance, in Figure 3(a), this would
be all the div elements in one flat set. The elements are
collected regardless of visibility, due to the complex nature
of DOM and CSS rendering where non-visible nodes can
contain visible children. For this same reason, the initial
set of elements is flat and non-hierarchical, because visible
children can often be inside non-visible nodes, and therefore
relying on DOM hierarchy would yield many false positives
and negatives. Instead, we build the hierarchy by visually
analyzing the collected flat set of elements. We do this by
first collecting the computed box model of each element in
the set. For instance, in Figure 3(a), this would result in a set
containing the computed box model of each div element
regardless of hierarchy. Next, we remove box models that
are visually located outside the page boundaries, since they
are not perceivable to sighted users. For boxes that are only
partially outside the page, we trim them to page boundaries.
Subsequently, we filter equivalent boxes, which is when a pair
of boxes visually contain the same set of visual objects. We
do this by removing the smaller box (in terms of visible area)
in a pair of equivalent boxes. Next, we filter boxes based on
how many visual objects are visually contained (i.e., located)
within them. We remove each box that visually contains the
entire set of visual objects on the page. For instance, in
Figure 3(a), any div that visually contains the entire set
of all div s is removed. This is because such a set does not
represent any semantically useful grouping, since the entire
set of objects is in one group only. Finally, we iterate over the
set of visual objects. For each object, we find the largest box
that visually contains the object. Once this is completed for
all visual objects, the final result is a set of boxes representing
the potential semantic groupings on the page.

C. Semantic Role Inference
Once semantic grouping is completed, we proceed to infer

the semantic role of each group. This step infers one of the
pre-defined landmark roles (Section II-A). An example can
be seen in the top navigation bar in Figure 3(c), indicating
the pre-defined role of navigation . However, not all roles
are relevant to our scope of automated semantic analysis. For
instance, region is a generic catch-all label that does not
convey any specific semantic role, and its use is generally
discouraged and typically not used by screen readers. Another
example is form , a label that indicates form regions. The
label is directly associated with HTML <form> elements,
and therefore no semantic analysis or inference is needed
for its detection. Accordingly, we focus our semantic anal-
ysis on the more relevant roles of main , navigation ,
contentinfo , and search , which will be described in

the following sections.
Main Role. The main ARIA role indicates a region that
contains the main output or results in a web page. For example,



on the search results page of a search engine, the region
containing the list of retrieved search results would be the
main region, which is then surrounded by other regions such
as the navigation bar or footer.

The process by which we infer the role of a group to
be main is as follows. First, we compute a score for
each detected group in the page. The score uses both visual
geometrical attributes as well as natural language processing
(NLP) measurements. More specifically:

ψmain(r) = A(r)ρ(r) (4)

where r is a semantic grouping of the page, ψmain is the score,
A(r) is the visual geometric area for r, and ρ(r) is an NLP
metric we define to measure linguistic aspects of the contents
of r. More specifically, ρ(r) first performs a part-of-speech
(POS) tagging, which is a common NLP analysis than assigns
POS labels (e.g., verb, noun, adjective) to each word. ρ(r) then
measures the variance of the linguistic POS tag frequencies
of all textual objects contained in r. We give an example
to clarify the various measured values. Consider the rendered
page in Figure 3-c. r would represent, for instance, the region
containing the body of the page (e.g., the Resources and About
Us sections). A(r) would be the geometric area of that region
as visible on the screen. The rationale is to capture how much
would a region occupy the visible space for sighted users.
As for ρ(r), it first collects all textual objects (as explained in
section III-A1) within r, which would collect all text elements
such as ”Resources”, ”About Us”, as well as the paragraphs
on the page. For each text object, POS tags are collected,
and then their frequencies (i.e., count of each tag type) are
computed. ρ then measures the variance of these POS tag
frequencies. For instance, a navigation region r that has, say,
the textual objects “Images”, “News”, and “Settings” has no
variance since they all have identical POS tags. Contrast this
with the main body of text in a page, which contains elements
such as such as paragraphs, section headings, links, and much
more. The likelihood of all such content to be linguistically
monotonous (i.e., all tags are nouns) is practically negligible.
This is why eq. (4) includes the ρ(r) factor. The A(r) in the
equation accounts for the fact that it is unlikely that the main
region of the page would be the visually smallest area on the
page. Once the score in eq. (4) is computed for all detected
regions, we sort the regions by score and select the region with
the highest score, which is finally reported to be the region
having the main role.
Navigation Role. The navigation ARIA role indicates a
region in a webpage that allows users to navigate between
various pages or views. The process by which we infer the
role of a group to be navigation is as follows. We first
compute a score for each group, using the following equation:

ψnav(r) =
C(r)

1− ρh(r)
(5)

where r is a semantic group of the page, ψnav is the score,
and C(r) is a metric that measures the clickables ratio inside
the group r. This computes the ratio of visual objects that

appear to be clickable to sighted users, which we define
as any visual object whose onscreen cursor is a hand or a
pointer, indicating to sighted users that it can be clicked on.
Accordingly, a group that has high C(r) is mostly composed
of objects that a sighted user can click on, which is typically
the case for navigation regions. For example, in Figure 3-c,
the yellow navigation region at the top contains elements that
all appear as clickables to sighted users. In contrast, a group
that does not contain any clickables (e.g., only static texts
and images) would have a C(r) equal to zero and therefore
is not a navigation region. This can be seen, for instance, in
Figure 3-c in the body of the page below the navigation bar,
where the body contains only static text paragraphs or images.
ρh(r) is a measure of the homogeneity of the contents of r. For
semantic groups containing only textual elements, ρh(r) is the
same NLP linguistic variance metric we defined in eq. (4). For
all other elements, ρh(r) represents the dimensional variance
of the objects in r. Finally, a given group is inferred to have a
navigation role when ψnav greater than or equal unity, which
was determined empirically.
ContentInfo/Footer Role. The contentinfo role (also
known as the footer role) indicates regions of the page that
represent complementary content to the parent document. That
is, instead of containing the main output of the page or the
main navigation elements, footer regions serve as complemen-
tary content or information that comes after the main content.
In a similar fashion to previous roles, we compute a score for
each detected grouping, using the following equation:

ψfooter(r) =
C(r)D(r)

A(r)
(6)

where, as in the previous roles, r is a semantic group of the
page, ψfooter is the score, A(r) is the visual pixel count for r,
D(r) is the visual distance from the geometric center of r to
the origin of the screen, and C(r) is the clickables ratio in r as
defined in eq. (5). As can be observed from the equation, the
score is mostly concerned with the visual geometric aspects
of the region, since this ARIA role is, by definition, spatial
in nature since it refers to a specific spatial visual placement
on the page. Accordingly, we compute and sort the score for
all groups, and select the group with the highest score. If the
group is located in the lower half of the page, it is reported
as a footer. Otherwise no footer regions are reported.
Search Role. The search ARIA role indicates regions in a
page that allow users to enter a search query and retrieve items
on the page or site. To infer this role, we use a combination of
visual analysis, a supervised machine learning model, as well
as linguistic (i.e., keyword) techniques.

First, we train a Convolutional Neural Network (CNN) to
visually recognize search icons. We collected and labeled 500
data points representing icon images (50% positive examples)
and used the Inception CNN architecture [22], which has been
shown to produce very effective classifications for computer
vision machine learning problems [22]. Subsequently, we use
this model to find search icons on a page. Next, we perform
a nearest neighbor search to look for text input fields in the



spatial vicinity of detected search icons. If a text input field
is found, we mark the region containing the search icon and
the input field as having a search semantic role. Furthermore,
we also check for cases where the search input text field
has no associated search icons. In this scenario, we extract
all text input fields on the page. We then perform a nearest
neighbor search to find any visible label texts in the visual
spatial vicinity around the input field. We then conduct NLP
stemming on the label text and find those that include key
linguistically significant stem words, such as “find”, “search”,
and “locate.” Any detected group that matches any of the above
cases is marked as having a search semantic role.

Finally, we note that, due to the non-hierarchical nature
of our semantic groupings, all inferred roles are agnostic to
hierarchies and the proposed approach is therefore able to
detect hierarchical combinations of the inferred roles (e.g., a
navigation region within a footer region).

D. Markup Conformance

This final stage asserts that the source of the page contains
markup indicating the presence of the inferred semantic re-
gions and their semantic roles. For instance, in Figure 3(c),
the approach so far would infer that the group of elements at
the top of the page represent a coherent semantic grouping,
and that their semantic role is navigation. If the HTML
markup corresponding to that area does not contain the ARIA
landmark role of navigation , then screen readers will not
be able to provide this semantic information to users, and
we recall that this semantic information is among the most
important and widely used of ARIA roles by users with
disabilities [11]. Therefore, in such cases where the markup
does not conform to the inferred semantic roles, we report an
accessibility failure and indicate the expected semantic markup
and where it should have been expressed in the page.

The mechanism of checking markup conformance is as
follows. First, we obtain the semantic groupings and any
inferred roles, as described in the previous sections. For each
semantic group, we identify all DOM elements that satisfy two
criteria: 1) all visual objects of the group are located inside
the element’s box model, and 2) the element’s box model is
located inside the group’s box model. This process captures
all possible DOM elements that would qualify as a root for the
region, without including objects from other regions. Any of
these DOM elements would therefore have to contain markup
indicating the presence of a region and its role.

We then check whether any element in the set meets both
of the following requirements: 1) the element has a role

attribute whose value matches the inferred semantic role of the
group. 2) the element’s computed box model visually overlaps
the box model of the inferred semantic group. The rationale
for adopting this approach is as follows. As we noted in
Section III-B, the complex nature of DOM and CSS rendering
easily allows cases where non-visible/non-rendered nodes can
contain visible rendered children. A DOM-based approach
(e.g., checking containment by XPath) would therefore yield

many false positives and negatives. Accordingly, we use the
visual check above for a more robust analysis.

If an element satisfying these requirements is found, we log
it and move on to the next inferred semantic role and check
that it has been correctly expressed in the markup. The process
is repeated for all semantic groupings for which a role has been
inferred. Any semantic grouping for which no role has been
inferred is discarded. A report is finally generated indicating
all roles that have been correctly expressed in markup, and all
roles that should have been in the markup but are missing.

E. Implementation

We implemented the proposed approach in a tool called
AXERAY (short for Accessibility Ray). It is implemented in
Java. We use Selenium WebDriver to instrument browsers and
extract DOM information and computed attributes. We use
OpenCV [23] for computer vision computations, DeepLearn-
ing4J [24] for machine learning operations, and the Stanford
CoreNLP library [25] for linguistic analysis. To make the study
replicable, we made available online a link to our AXERAY
tool and the anonymized participants’ responses [26].

IV. EVALUATION

To evaluate AXERAY, we conducted qualitative and quan-
titative studies to answer the following research questions:
RQ1 How accurate is AXERAY in inferring semantic group-

ings and semantic roles?
RQ2 To what extent can AXERAY detect accessibility failures

in real-world web pages?
In the following subsections, we discuss the details of

the experiments that we designed to answer each research
question, together with the results.

A. RQ1: Semantic Grouping and Roles Inference

In this question, the objective is to assess how accurate is
the semantic grouping and semantic role inference processes.
The rationale for evaluating this aspect is that the approach
first performs the grouping and semantics inference, and then
uses this inference to test for accessibility. Accordingly, we
first need to assess the inference process itself.

We evaluated this question as follows. First, we collected
10 random subjects from the Moz Top 500 1 most popular
websites. We then ran AXERAY on each test subject’s URL
and obtained the output groupings and semantic roles. Figure 5
shows an example of the output. Each rectangle represents
an inferred grouping, together with it’s semantic role. Subse-
quently, we recruited human evaluators. 10 evaluators were
recruited from the MTurk 2 crowdsourcing platform. The
qualifications of participants are to be working in the software
industry and to have maintained the highest level of accuracy
on the MTurk platform, which is referred to as Masters level.

Subsequently, each human evaluator was presented with the
output of AXERAY for all test subjects, and asked to assess

1https://moz.com/top500
2https://www.mturk.com



Figure 5. Sample of the generated accessibility report.

the accuracy of groupings and roles. More specifically, we
asked them to identify any output groups that do not represent
a meaningful semantic grouping. This represents the false
positives of groupings, while the remainder are true positives.
We also asked them to identify any meaningful semantic
groupings on the page that were not included in the output.
These are the false negatives. The same process is repeated
for the semantic roles.

1) Results and Discussion: Table I shows the results of
evaluating the accuracy of semantic grouping and role infer-
ence. The columns show the precision, recall, and F-1 mea-
sure averaged across evaluators. The two groups of columns,
labeled “Grouping inference” and “Role inference”, show
the accuracy of the proposed approach in inferring semantic
groupings and semantic roles, respectively. The highlighted
cells show the minimum and maximum values in each column.

The key outcome of this evaluation is the F-1 measures,
which are at 87% and 90% for grouping and role inference,
respectively. These values indicate a rather effective inference
process. The lowest precision was 71%. This often happens
due to a somewhat unusual DOM structure, where elements
in the same region were placed at large tree depth separations
from one another. This resulted in mistakenly grouping a
number of elements that should have not been grouped. As
for the recall, the lowest performance was at 60%. Such
low values often happen in corner cases where elements are
falsely excluded from groups due to having an empty box
model stemming from complex nested CSS rules, despite
being present in the group.

B. RQ2: Accessibility Failures Detection

While the previous question examined how accurate the
inferred semantic groupings and roles are, this RQ evaluates
to what extent the inferred information can be used to reliably
detect accessibility failures.

Due to the absence of ground truth data, we evaluate this
RQ in two complementary ways: 1) using a fault injection
experiment, and 2) evaluating the output on a large number
of real-world subjects in the wild. The rationale for using
these two complementary ways is as follows. In the fault
injection experiment (explained section IV-B1), existing se-
mantic markups (if any) are removed (thereby simulating a
fault) and a check is made whether the tool is able to detect

Table I
PRECISION AND RECALL OF GROUPING AND ROLE INFERENCE.

HIGHLIGHTED NUMBERS ARE THE MINIMUM AND MAXIMUM VALUES IN
EACH COLUMN.

Grouping inference Role inference
Subject Prec. Recall F-1 Prec. Recall F-1

wikipedia.org 94% 89% 91% 91% 91% 91%
google.com 88% 85% 87% 86% 81% 83%
amazon.com 92% 87% 89% 83% 79% 81%
stackoverflow.com 91% 94% 92% 91% 81% 86%
medium.com 96% 94% 95% 94% 99% 96%
khanacademy.org 92% 98% 95% 96% 89% 93%
imdb.com 71% 86% 78% 92% 96% 94%
cnn.com 97% 92% 95% 97% 97% 97%
rt.com 92% 60% 72% 94% 90% 92%
booking.com 92% 73% 81% 93% 89% 91%
Average 90% 85% 87% 91% 89% 90%

this removal. The benefit of this experiment is that it allows
automated evaluation without a subjective assessment. The
drawback, however, is that it is only a lower bound of the
actual accuracy, since it says nothing about other possible role
faults that have not been injected (i.e., due to the absence of
some roles in the original markup itself). For this reason, we
supplement the fault injection experiment with a manual item-
by-item evaluation of the tool’s output in order to evaluate
all true/false positive and negative results. We describe each
approach in the following subsections.

Subjects. We conducted the experiments in this RQ on a total
of 30 real-world subjects. The subjects were collected in two
ways. The first half of subjects were randomly selected from
the Moz Top 500 most popular websites as in RQ1. The second
half of subjects were obtained from Discuvver.com, which is
a service that returns a random website from the internet.

1) Fault injection: For each subject, we inject a random
fault in its markup, and assess if AXERAY was able to detect
the fault. We recall from section II-A that a web page is
deemed inaccessible if there is an absence of semantic roles.
That is, the developer did not add the necessary semantic
markup to the page. Our goal is thus to simulate this be-
havior by removing all existing semantic markups on the
page, and therefore create a new page as if the developer
had not included the necessary semantic markup, and then
check whether our approach can re-detect them. Such markup
omission, by definition, is what makes web pages inaccessible,



Table II
RESULTS OF DETECTING FAULT INJECTIONS.

# Detected faults

Subject Total #
injections

proposed
approach baseline

bing.com 1 1 0
youtube.com 3 3 0
google.com 4 3 0
microsoft.com 7 5 0
bbc.com 5 3 0
amazon.com 4 3 0
medium.com N/A
yahoo.com 3 1 0
live.com 4 4 0
paypal.com 2 1 0
blogger.com 2 2 1
netflix.com N/A
stackoverflow.com 3 3 0
imdb.com 4 3 0
walmart.com 3 2 0
fuelly.com 1 1 0
typing.com 3 2 0
iconpacks.net 2 2 0
expatistan.com N/A
memrise.com N/A
retrevo.com 3 3 0
startupstash.com 4 3 0
eatthismuch.com 1 0 0
kdl.org 3 2 0
getpocket.com 2 2 0
retailmenot.com 3 3 0
mailinator.com N/A
myfridgefood.com 1 0 0
joinhoney.com 2 2 0
bannereasy.com 1 1 0
Total 71 77.5% 1.4%

and is therefore the only meaningful fault type. In other words,
any mutation of the markup is effectively a markup omission,
since the exact expected semantic role would become absent
from the markup. Misspelled attribute values are also effec-
tively markup omissions. For instance, suppose that a region
should have been marked as a navigation region. Whether the
navigation role was completely absent from the markup,

or was misspelled (i.e., nagviton ), both cases are still
effectively markup omissions.

We now describe the injection process. First, we load the
subject in an instrumented browser (i.e., via Selenium). We
then remove all semantic markups on the page (i.e., landmark
role s). We then apply AXERAY on the subject and collect

the output. If after the fault injection (i.e., removal of role s)
AXERAY was able to indicate that there should be a semantic
role , we conclude that the injected fault has been caught.

Otherwise, the fault was not detected.

Baseline. In order to have a more thorough evaluation, we
included a baseline in our experiments. However, since there
are no existing tools that perform semantic checking, our
baseline consists of a simple random selection process. In this
process, random regions from the page are selected. Next, a
random semantic role is assigned to each randomly selected
region. This set of semantic regions and their semantic roles
is then taken to be the baseline.

Results and Discussion. Table II shows the results of evaluat-
ing the fault injection experiment. The first column shows the
total number of fault injections performed on each subject.
We recall that this first column is not a number we chose;
it is rather the total number of injections that were possible,
since the faults are removals of existing semantic markup. The
second column shows the number of injected faults that were
successfully detected by, whereas the third column shows the
number of injected faults that the tool has failed to detect. The
last row sums up the results across all subjects.

The main result of the evaluation is that AXERAY has
detected, on average, around 77.5% of the injected faults.
While this performance is relatively good, given that this sort
of analysis hasn’t been automated so far, we do note this is
only a lower bound of the actual accessibility failure detection
ability, since it says nothing about other possible failures that
have not been injected (e.g., where the original markup itself
did not include certain semantic roles).

In certain subjects in Table II, marked with “N/A”, the
fault injection process was not possible. This was because the
subject’s markup did not contain any of the landmark semantic
roles, and therefore it was not possible to remove them them
and check if our tool was able to detect them back. Despite
some of these subjects being top 100 websites, the lack of
such markup in the subject is an example that illustrates the
need for effective and automated accessibility testing.

2) Direct output evaluation: In this step, we manually
evaluate the output on a large number of real-world subjects in
the wild. First, we loaded each test subject in an instrumented
web browser (i.e., via Selenium). Page popups or notifications,
if any, were closed. Next, we applied AXERAY on the subject
and collected the generated output (as shown in Figure 5).
We then categorized each item in the report into one of the
following: True positive: This represents a true accessibility
failure. This category holds whenever the tool has reported
the absence of a correct semantic role that is indeed missing
from markup, and therefore the reported failure is true. False
positive: This is a false accessibility failure. In this case the
tool has either reported an incorrect semantic role or the role is
already in the markup but was falsely flagged as missing, and
therefore the reported failure is false. False negative: This case
is a false accessibility pass (not failure, as in the two previous
cases). This represents cases where a semantic role should
have been included the markup, but the tool did not report
an accessibility failure. True negative: This corresponds to
true accessibility pass. This represents cases where a role
is actually semantically not present on the page, and the
tool did not report a failure. This also corresponds to cases
where a semantic role is present in the markup, and the tool
has reported that the markup is conforming to the inferred
semantic role.

Results and Discussion. Table III shows the results of the
evaluation. Each row lists the subject, the true positive/negative
and the false positive/negative for the subject. The last row
shows the accuracy, precision, recall, and the F-1 measure.



Table III
DIRECT EVALUATION OF ACCESSIBILITY FAILURE DETECTION ON 30 REAL-WORLD SUBJECTS.

Proposed approach SortSite Baseline

Subject TP FP TN FN semantic
issues

syntactic
issues TP FP TN FN

bing.com 4 0 1 0 0 11 0 3 0 4
youtube.com 0 0 4 0 0 10 0 2 0 0
google.com 2 2 3 0 0 6 0 2 0 2
microsoft.com 2 1 10 0 0 10 0 1 0 2
bbc.com 2 2 2 2 0 3 0 4 0 4
amazon.com 4 0 7 0 0 13 0 1 0 4
medium.com 4 0 1 0 0 6 0 2 0 4
yahoo.com 1 0 1 3 0 9 0 3 0 4
live.com 2 0 4 0 0 2 0 3 0 2
paypal.com 3 0 2 0 0 13 0 2 0 3
blogger.com 1 0 3 1 0 5 1 2 0 2
netflix.com 2 0 1 1 N/A N/A 0 4 0 3
stackoverflow.com 3 0 6 0 0 18 0 2 0 3
imdb.com 2 2 3 0 N/A N/A 0 3 0 2
walmart.com 6 0 2 1 0 7 0 4 0 7
fuelly.com 3 0 2 0 0 12 0 1 0 3
typing.com 2 1 3 2 0 10 0 2 0 4
iconpacks.net 3 0 1 1 0 8 0 4 0 4
expatistan.com 2 3 1 0 0 9 0 1 0 2
memrise.com 4 1 2 0 0 5 0 1 0 4
retrevo.com 2 0 3 0 N/A N/A 0 2 0 2
startupstash.com 1 0 4 0 0 12 0 4 0 1
eatthismuch.com 6 0 1 0 0 15 0 3 0 6
kdl.org 3 1 2 1 0 9 0 3 0 4
getpocket.com 2 0 3 0 0 7 0 1 0 2
retailmenot.com 5 0 3 0 0 2 0 2 0 5
mailinator.com 2 1 1 0 0 6 0 4 0 2
myfridgefood.com 2 1 1 1 0 8 0 2 0 3
joinhoney.com 3 0 3 0 0 7 0 3 0 3
bannereasy.com 4 0 2 0 0 5 0 1 0 4

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1
85.4% 84.5% 86.3% 85.4% 0.6% 1.3% 1.0% 1.2%

The values of the accuracy, precision, and recall are between
84% and 86%, indicating a relatively good performance. The
true positive column represents the true accessibility failures
that are indeed present in the subjects. This certainly does not
cover all possible accessibility failures, but rather the subset
of accessibility issues that we focus on in this work (i.e., the
semantic roles). The true negative column can be thought of
as the number of cases where the markup of the subject is
“in agreement” with the tool’s output. In the median, two
true accessibility failures were detected per subject, and two
inferred semantic roles per subject were in agreement with
what has been expressed in the markup. For the second half
of subjects in Table III (i.e., the random sites), 60% have
used semantic roles. In contrast, for the subset of top websites
(i.e., the first half of subjects), 74% have used semantic roles.
40% of the random websites did not use any semantic roles,
compared to 26% of the top websites. This observation is
expected since top sites are more likely to have more resources
to create better products. The average execution runtime was
17 seconds.

We then investigated the reasons behind the false positives
and negatives. One common reason is erroneous inference of
navigation roles. This occurred, for instance, for a region that
consisted of weather forecast for the next few days. From
the perspective of our inference procedure, this looked like
a navigation area since it had a group of links that were

coherent in content and presentation (in the sense described
in Section III-C). Accordingly, it was falsely indicated as
a navigation, and therefore resulted in a false accessibility
failure. Another reason involves missing footer roles that
should have been reported. This occurred, for instance, for
a region that was not recognized by the semantic grouping
stage, and therefore no role was able to be inferred for it.

For comparison, Table III also includes an evaluation of
SortSite 3, which is the best performing state-of-the-art ac-
cessibility testing tool [10]. As mentioned in the introduction,
SortSite and other state-of-the-art tools only perform syntactic
checks and is therefore unable to detect the semantic issues
that are the focus of this work. Accordingly, we run an
evaluation that verifies this empirically. Each subject is fed
to SortSite, and the output report is saved. Each reported
failure is then categorized as either a syntactic issue or a
semantic issue. We recall that, as discussed in Section II-B,
a syntactic issue is any failure that only checks the syntax of
the HTML. Examples include checks like (“each a element
must contain non-empty text”), or (“ input must not appear
as a descendant of a ”). These are direct checks that are
only concerned with syntax. Compare this, for instance, with
the reported failure shown in Figure 5. Here, the failure is
semantic in nature. That is, the failure is not an application of

3https://www.powermapper.com/products/sortsite/



some syntactic rule. Rather, the failure is reported because the
markup does not conform to how the page is semantically
perceived from a visual perspective, not because it didn’t
conform to a predetermined syntactic rule.

From Table III, we observe that SortSite was able to find
many syntactic issues (rows with N/A are cases were the tool
was unable to load the subject). However, it did not detect any
of the semantic issues. This is expected, as the rationale for this
work was the observation that the state-of-the-art only conduct
syntactic checks, which can not detect the more important and
widely used semantic information.

3) Future work: In this work, we focused on an important
subset of accessibility requirements, which are the semantic
roles as discussed in II-A. Therefore, as expected, our ap-
proach can not cover all possible accessibility requirements.
This leaves open a number of avenues for future work to
address other accessibility requirements, each of which would
require a novel technique to address. The variations in the
semantics of various accessibility requirements and the lack
of approaches to address them, mainly due to the difficulty of
performing high-level semantic analysis, presents a rich and
fertile ground to conduct research, which has received little
attention from the software engineering research community
as discussed in the introduction. For future work, we believe
it will be a fruitful and interesting pursuit for the research
community to explore some of these other accessibility re-
quirements.

4) Threats to validity: We chose test subjects (i.e., web
sites) randomly from the Internet with the mentioned criteria
in Section IV, to avoid any selection bias. Plus, the partic-
ipants were selected to be highly qualified evaluators at the
crowdsourcing platform, mitigating the threats to the internal
validity of the study. The subjects are diverse and complex
enough to be representative of real-world scenarios, mitigating
the external validity of the study by making the results general-
izable. To make the study replicable, we made available online
a link to our AXERAY tool and the anonymized participants’
responses [26].

V. RELATED WORK

Accessibility attribute checkers. Existing approaches related
to accessibility testing focus on checking syntactical attributes.
Eler et al. [5] and Patil et al. [27] check for missing or wrong
UI attributes in Android apps, such as missing alternative
text attributes in images, or color attribute values below a
certain threshold. Similar checks are also used in other tools
such as Google’s Accessibility Scanner [28], WAVE [29], and
ASLint [30]. The aforementioned papers focus on syntactic
checks, as opposed to the proposed approach in this work
which checks for high-level aspects such as page structure
and semantic landmarks, which are the most important ARIA
roles that users with disabilities rely on [11].

Accessibility guidelines. The majority of existing work lies
within the accessibility research community rather than soft-
ware engineering. This research area involves studying certain

categories of websites (e.g., airline websites [31], [32], ed-
ucation portals [33], other categories [34], [35], [36], [37])
or certain platforms (e.g., Android [38], [39], [40]), and then
focusing on manually observing how non-sighted users would
use those apps or websites in order to identify any patterns
or trends in accessibility, with the purpose of publishing
improved accessibility guidelines. Another line of work fo-
cuses on researching software development best practices and
how do they impact the accessibility of the end product. For
instance, Sanchez et al. [41] and Bai et al. [42], [43] examine
development practices in agile teams working on accessible
software, with the goal of proposing a guideline for better
agile practices. Krainz et al. [44] investigates the impact of
a model-driven approach to development on the accessibility
of the created product. None of the aforementioned works,
however, is concerned with developing an automated approach
to test accessibility. Instead, their focus is researching best
practices or guidelines for developers and designers.

Visual analysis. There exist a few techniques that analyze web
applications from a visual perspective. Choudhary et al. [45]
propose an approach that detects cross-browser compatibility
by examining visual differences between the same app running
in multiple browsers. Burg et al. [46] present a tool that helps
developers understand the behavior of front-end apps. It allows
developers to specify the element they are interested in, then
tracks that element for any visual changes to understand code
behavior. Bajammal et al. [47] propose an approach to generate
reusable web components by analyzing design mockups. In
contrast to our work, none of these works are related to
accessibility.

VI. CONCLUSION

Software accessibility is the notion of building software
that is usable by users with disabilities. Traditionally, software
accessibility has often been an afterthought or a nice to have
optional feature. However, software accessibility is increas-
ingly becoming a legal requirement that must be satisfied.
While some tools exist to perform basic forms of accessibility
checks, they focus on syntactic checks, as opposed to checking
the more critical high level semantic accessibility features that
users with disabilities rely on. In this paper, we proposed
an approach that automates web accessibility testing from a
semantic perspective. It analyzes web pages using a combi-
nation of visual analysis, supervised machine learning, and
natural language processing, and infers the semantic groupings
present in the page and their semantic roles. It then asserts
whether the page’s markup matches the inferred semantics. We
evaluated our approach on 30 real-world websites and assessed
the accuracy of semantic inference as well as its ability to
detect accessibility failures. The results show, on average, an
F-measure of 87% for inferring semantic groupings, and an
accessibility failures detection accuracy of 85%.
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